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Statistical physics of regular low-density parity-check error-correcting codes
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A variation of Gallager error-correcting codes is investigated using statistical mechanics. In codes of this
type, a given message is encoded into a codeword that comprises Boolean sums of message bits selected by
two randomly constructed sparse matrices. The similarity of these codes to Ising spin systems with random
interaction makes it possible to assess their typical performance by analytical methods developed in the study
of disordered systems. The typical case solutions obtained via the replica method are consistent with those
obtained in simulations using belief propagation decoding. We discuss the practical implications of the results
obtained and suggest a computationally efficient construction for one of the more practical configurations.

PACS number~s!: 02.50.2r, 89.90.1n, 05.50.1q, 75.10.Hk
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I. INTRODUCTION

Error-correcting codes are commonly used for relia
data transmission through noisy media, especially in the c
of memoryless communication where corrupted messa
cannot be repeatedly sent. These techniques play an im
tant role in a wide range of applications from memory d
vices to deep space explorations, and are expected to be
even more important due to the rapid development in mo
phones and satellite-based communication.

In a general scenario, the sender encodes anN dimen-
sional Boolean message vectorj, wherej iP(0,1), ; i , to an
M (.N) dimensional Boolean codewordz0, which is then
transmitted through a noisy communication channel. No
corruption during transmission can be modeled by the no
vectorz, where corrupted bits are marked by the value 1 a
all other bits are zero, such that the received corrupted co
word takes the formz5z01z (mod 2!. The corrupted mes
sage received is then decoded by the receiver to retrieve
original messagej.

The error-correcting ability comes at the expense of inf
mation redundancy. Shannon showed in his seminal work@1#
that error-free communication is theoretically possible if t
code rate, representing the fraction of informative bits in
transmitted codeword, is below the channel capacity; in
case of unbiased messages transmitted through a binary
metric channel ~BSC!, which we will focus on here,
R5N/M satisfies

R,11p log2 p1~12p!log2~12p!. ~1!

The expression on the right is termedShannon’s bound.
However, Shannon’s derivation is nonconstructive and
quest for codes that saturate Eq.~1! has been one of the
central topics of information theory ever since.

In this paper we examine the efficiency and limitations
Gallager-type error-correcting code@2,3#, which has attracted
much interest recently among researchers in this field. T
code was discovered almost forty years ago by Gallager@2#
but was abandoned shortly after its invention due to the c
putational limitations of the time. Since their recent redisco
ery by MacKay and Neal~MN! @3#, different variations of
PRE 621063-651X/2000/62~2!/1577~15!/$15.00
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Gallager-type codes have been developed@4–7#, attempting
to get as close as possible to saturating Shannon’s boun
this paper we will examine the properties of a family
codes based on one variation, the MN code@3#, using the
established methods of statistical physics@8–11#, to provide
a theoretical study based on the typical performance of co
rather on the worst case analysis.

This paper is organized as follows. In the next two se
tions, we introduce Gallager-type error-correcting codes
detail and link them to the statistical mechanics framewo
We then examine the equilibrium properties of various me
bers of this family of codes using the replica method~section
IV ! and compare the bit-error rate below criticality. In Se
V, we examine the relation between belief-propagation~BP!
decoding and the Thouless-Anderson-Palmer~TAP! ap-
proach to diluted spin systems; we then use it for compar
the analytical results obtained via the replica method to th
obtained from simulations using BP decoding. In Sec. VI
show a computationally efficient construction for one of t
more practical configurations. Finally, we present conc
sions for the current work and suggest future research di
tions.

II. GALLAGER-TYPE ERROR-CORRECTING CODES

There are several variations of Gallager-type err
correcting codes. The one discussed in this paper is ter
the MN code, recently introduced by MacKay and Neal@3#.
In these codes, a Boolean messagej is encoded into a code
word z0 using two randomly constructed Boolean sparse m
trices Cs and Cn , which are characterized in the followin
manner.

The rectangular sparse matrixCs is of dimensionality
M3N, havingK randomly chosen nonzero unit elements p
row andC per column. The matrixCn is anM3M ~mod 2!
invertible matrix havingL randomly chosen nonzero ele
ments per row and column. These matrices are shared by
sender and the receiver.

Using these matrices, one can encode a messagej into a
codewordz0 in the following manner:

z05Cn
21Csj ~mod 2!. ~2!
1577 ©2000 The American Physical Society
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This is then transmitted via a noisy channel. Note that
matrix and vector components are Boolean (0,1), and
summations are carried out in this field. For simplicity, t
noise process is modeled hereafter by a binary symme
channel, where each bit is independently flipped with pr
ability p. Extending the code presented here to other type
noise is straightforward.

During transmission, a noise vectorz is added toz0 and a
corrupted codewordz5z01z ~mod 2! is received at the othe
end of the channel. Decoding is then carried out by tak
the product of the matrixCn and the received codewordz,
which results inCsj1Cnz5Cnz[J. The equation

CsS1Cnt5J ~mod 2! ~3!

is solved via the iterative methods of belief propagat
@12,13# to obtain optimal estimates for Boolean vectorsS
andt. BP methods in this context have recently been sho
to be identical to a TAP based solution@14# of a similar
physical system@8#.

III. A STATISTICAL MECHANICS PERSPECTIVE

Sourlas was the first to point out that error-correcti
codes of this type have a similarity to Ising spin systems
statistical physics@15#; he demonstrated this using a simp
version of the same nature. His work, which focused on
tensively connected systems, was recently extended to
nitely connected systems@9,11#. We follow a similar ap-
proach in the current investigation; preliminary results ha
already been presented in@10#.

To facilitate the statistical physics analysis, we first e
ploy the binary representation (61) of the dynamical vari-
ables S and t and of the check vectorJ rather than the
Boolean one (0,1). Themth component of Eq.~3! is then
rewritten as

)
i PLs(m)

Si )
j PLn(m)

t j5Jm , ~4!

whereLs(m) andLn(m) are the sets of all indices of nonze
elements in rowm of the sparse matricesCs andCn , respec-
tively. The checkm is given by messagej and noisez as
Jm5) i PLs(m)j i) j PLn(m)z j ; it should be emphasized that th

message vectorj and the noise vectorz themselves are no
known to the receiver.

An interesting link can now be formulated between t
Bayesian framework of MN codes and Ising spin system
Rewriting Kronecker’sd for binary variablesx and y as
d@x;y#5(11xy)/25 limb→`exp(2bd @21;xy#), one may
argue that, using it as a likelihood, Eq.~4! gives rise to the
conditional probability of the checkJ for givenS, t, Cs , and
Cn

P~JuS,t,Cs ,Cn!

5 lim
b→`

expS 2b (
m51

M

dF21;Jm )
i PLs(m)

Si )
j PLn(m)

t j G D .

~5!
ll
ll
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-
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-
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Prior knowledge about possibly biased message and noi
represented by the prior distributions

Ps~S!5

expS Fs(
i 51

N

Si D
~2 coshFs!

N
, Pn~t!5

expS Fn(
j 51

M

t j D
~2 coshFn!M

,

~6!

respectively. A nonzero fieldFs is introduced for biased
messages andFn is determined by the flip ratep of channel
noise asFn5(1/2)ln@(12p)/p#. Using Eqs.~5! and ~6!, the
posterior distribution ofS andt for given checkJ and ma-
tricesCs andCn is of the form

P~S,tuJ,Cs ,Cn!5
P~JuS,t,Cs ,Cn!Ps~S!Pn~t!

P~JuCs ,Cn!

5 lim
b→`

exp@2bH~S,tuJ,D!#

Z~J,D!
, ~7!

whereP(JuCs ,Cn)5($S,t%P(JuS,t,Cs ,Cn)Ps(S)Pn(t),

H~S,tuJ,D!5 (
m51

M

dF21;Jm )
i PLs(m)

Si )
j PLn(m)

t j G
2

Fs

b (
i 51

N

Si2
Fn

b (
j 51

M

t j

5 (
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

D^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

3d@21;J^ i 1, . . . ,i K; j 1, . . . ,j L&

3Si 1
•••Si K

t j 1
•••t j L

#

2
Fs

b (
i 51

N

Si2
Fn

b (
j 51

M

t j , ~8!

and

Z~J,D!5 lim
b→`

(
$S,t%

exp@2bH~S,tuJ,D!#

5 (
$S,t%

)
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

@11 1
2 D^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

3~J^ i 1 , . . . ,i K ; j 1 , . . . ,j L&Si 1
•••Si K

t j 1
•••t j L

21!#

3expS Fs(
i 51

N

Si1Fn(
j 51

M

t j D . ~9!

The final form of posterior distribution~7! implies that the
MN code is identical to an Ising spin system defined by
Hamiltonian~8! in the zero temperature limitT5b21→0. In
Eqs.~8! and~9!, we introduced the sparse connectivity tens
D^ i 1 , . . . ,j L& which takes the value 1 if the corresponding i
dices of both message and noise are chosen~i.e., if all cor-
responding indices of the matricesCs and Cn are 1! and 0
otherwise, and coupling J^ i 1 , . . . ,i K ; j 1 , . . . ,j L&
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5j i 1
j i 2

•••j i K
z j 1

z j 2
•••z j L

. These are used to isolate the d
order in choosing the matrix connections, embedded
D^ i 1 , . . . ,j L& , and to simplify the notation.

The posterior distribution~7! can be used for decoding
One can show that the expectation of the overlap betw
the original messagej and the retrieved oneĵ,

m5
1

N (
i 51

N

j i ĵ i , ~10!

is maximized by settingĵ to its Bayes-optimal estimato
@16–19#,

ĵ i
B5sgn~mi

S!, mi
S5 (

$S,t%
Si P~S,tuJ,Cs ,Cn!. ~11!

It is worthwhile noting that this optimal decoding is realize
at zero temperaturerather than at afinite temperatureas in
@16–19#. The reason is that the true likelihood term~5! cor-
responds to theground stateof the first term of the Hamil-
tonian ~8! due to the existence of more degrees of freedo
in the form of the dynamical variablest, which do not ap-
pear in other systems. Introducing the additional variablet
increases the degrees of freedom in the spin system froN
to N1M , while the number of constraints from the checksJ
remainsM. This implies that in spite of the existence
quenched disorder caused byJ and D, the system is free
from frustration even in the low-temperature limit, which
useful for practical decoding using local search algorithm
The last two terms in Eq.~8! scale withb and remain finite
even in the zero temperature limitb→` representing the
true prior distribution, which dominates the statistical pro
erties of the system, while the first term vanishes to sat
the parity-check condition~4!.

IV. EQUILIBRIUM PROPERTIES:
THE REPLICA METHOD

As we use the methods of statistical mechanics, we c
centrate on the case of long messages, in the limit
N,M→` while keeping the code rateR5N/M5K/C finite.
This limit is quite reasonable for this particular proble
since Gallager-type codes are usually used in the trans
sion of long (104– 105) messages, where finite size corre
tions are likely to be negligible.

Since the first part of the Hamiltonian~8! is invariant
under the gauge transformationSi→j iSi , t j→z jt j , and
J^ i 1 , . . . ,j L&→1, it is useful to decouple the correlation b

tween the vectorsS,t and j,z. Rewriting the Hamiltonian
using this gauge, one obtains a similar expression to Eq~8!
apart from the second terms, which becomeFs /b( i 51j iSi
andFn /b( j 51z jt j .

Due to the existence of several types of quenched diso
in the system, it is natural to resort to the replica method
investigating the typical properties in equilibrium. More sp
cifically, we calculate expectation values of thenth power of
in

n

,

.

-
fy

n-
f

is-
-

er
r
-

the partition function~9! with respect to the quenched var
ablesj, z, andD and take the limitn→0.

Carrying out the calculation in the zero temperature lim
b→` gives rise to a set of order parameters

qa,b, . . . ,g5K 1

N (
i 51

N

ZiSi
aSi

b , . . . ,Si
gL

b→`

,

~12!

r a,b, . . . ,g5K 1

M (
i 51

M

Yjt j
at j

b , . . . ,t j
gL

b→`

,

wherea, b, . . . represent replica indices, and the variab
Zi and Yj come from enforcing the restriction ofC and L
connections per index, respectively@9,20#,

dS (
^ i 2 , . . . ,i K&

D^ i ,i 2 , . . . ,j L&2CD
5 R

0

2p dZ

2p
Z(^ i 2 , . . . ,i K&D^ i ,i 2 , . . . ,j L&2(C11), ~13!

and similarly for the restriction on thej indices.
To proceed further, it is necessary to make an assump

about the order parameter symmetry. The assumption m
here is that of replica symmetry in both the order parame
and the related conjugate variables

qa,b, . . . ,g5aqE dx p~x!xl , q̂a,b, . . . ,g5aq̂E dx̂ p̂~ x̂!x̂l ,

~14!

r a,b, . . . ,g5arE dy r~y!yl , r̂ a,b, . . . ,g5ar̂E dŷ r̂~ ŷ!ŷl ,

where l is the number of replica indices,a* are normaliza-

tion coefficients, andp(x), p̂( x̂), r(y), andr̂( ŷ) represent
probability distributions. Unspecified integrals are over t
range@21,11#. This ansatz is supported by the facts that~i!
the current system is free of frustration and~ii ! replica sym-
metry breaking has never been observed at Nishimori’s c
dition @21# which corresponds to using correct priorsFs and
Fn in our case@16#. The results obtained hereafter also su
port this ansatz. Extremizing the partition function with r

spect to distributionsp(•), p̂(•), r(•), and r̂(•), one then
obtains the free energy per spin
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f 52
1

N
^ ln Z&j,z,D

5extr$p,p̂,r,r%FC

K
ln 21CE dx dx̂p~x!p̂~ x̂!ln~11xx̂!1

CL

K E dy dŷr~y!r̂~ ŷ!ln~11yŷ!2
C

KE S )
k51

K

dxkp~xk!D
3S )

l 51

L

dylr~yl !D lnS 11)
k51

K

xk)
l 51

L

yl D 2E S )
k51

C

dx̂kp̂~ x̂k!D
3K lnS eFsj)

k51

C

~11 x̂k!1e2Fsj)
k51

C

~12 x̂k!D L
j

2
C

KE S )
l 51

C

dŷl r̂~ ŷl !D K lnS eFnz)
l 51

L

~11 ŷl !1e2Fnz)
l 51

L

~12 ŷl !D L
z
G ,

~15!
p

n
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fall
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where angled brackets with subscriptsj, z, and D denote
averages over the message and noise distributions, res
tively, and the sparse connectivity tensorD. Message aver-
ages take the form

^•••&j5 (
j561

11j tanhFs

2
~••• ! ~16!

and similarly for^•••&z . Details of the derivation are give
in Appendix A.

Taking the functional variation off with respect to the
distributions p, p̂, r, and r̂, one obtains the following
saddle point equations:

p~x!5E )
l 51

C21

dx̂lp̂~ x̂l !

3K dFx2tanhS jFs1 (
l 51

C21

tanh21x̂l D G L
j

,

p̂~ x̂!5E )
l 51

K21

dxlp~xl !E )
l 51

L

dylr~yl !

3dS x̂2 )
l 51

K21

xl)
l 51

L

yl D ,

~17!

r~y!5E )
l 51

L21

dŷl r̂~ ŷl !

3K dF y2tanhS zFn1 (
l 51

L21

tanh21ŷl D G L
z

,

r̂~ ŷ!5E )
l 51

K

dxlp~xl !E )
l 51

L21

dylr~yl !dS ŷ2)
l 51

K

xl )
l 51

L21

yl D .

After solving these equations, the expectation of the ove
between the messagej and the Bayesian optimal estimat
~11!, which serves as a performance measure, can be e
ated as

m5
1

N K (
i 51

N

j isgn̂ Si&b→`L
j,z,D

5E dzf~z!sgn~z!,

~18!
ec-

p

lu-

where

f~z!5E S )
l 51

C

dx̂lp̂~ x̂l !D
3K dFz2tanhS Fsj1(

i 51

C

tanh21x̂i D G L
j

. ~19!

The derivation of Eqs.~18! and~19! is given in Appendix B.
Examining the physical properties of the solutions f

various connectivity values exposes significant differen
between the various cases. In particular, these solutions
into three different categories: the cases ofK51 and general
L value, the case ofK5L52, and all other parameter value
where eitherK>3 or L>3 ~and K.1). We describe the
results obtained for each of these cases separately.

A. Analytical solution: The case ofKÐ3 or LÐ3, KÌ1

Results for the cases ofK>3 or L>3, K.1 can be ob-
tained analytically and have a simple and transparent in
pretation; we will therefore focus first on this simple cas
For unbiased messages~with Fs50), one can easily verify
that the ferromagnetic phase, characterized bym51 and the
probability distributions

p~x!5d~x21!, p̂~ x̂!5d~ x̂21!,
~20!

r~y!5d~y21!, r̂~ ŷ!5d~ ŷ21!,

and the paramagnetic state ofm50 with the probability dis-
tributions

p~x!5d~x!, p̂~ x̂!5d~ x̂!, r̂~ ŷ!5d~ ŷ!,

r~y!5
11tanhFn

2
d~y2tanhFn!

1
12tanhFn

2
d~y1tanhFn!, ~21!

satisfy the saddle point equations~17!. Other solutions may
be obtained numerically; here we have represented the
tributions by 103– 104 bins and iterated Eqs.~17! 100–500
times with 105 Monte Carlo sampling steps for each iter
tion. No solutions other than the above two have been
covered.
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The thermodynamically dominant state is found by eva
ating the free energy of the two solutions using Eq.~15!,
which yields

f ferro52
C

K
Fn tanhFn52

1

R
Fn tanhFn , ~22!

for the ferromagnetic solution and

f para5
C

K
ln 22 ln 22

C

K
ln 2 coshFn

5
1

R
ln 22 ln 22

1

R
ln 2 coshFn ~23!

for the paramagnetic solution. Figure 1~a! describes sche
matically the nature of the solutions for this case, in terms
the free energy and the magnetization obtained, for vari
flip rate probabilities. The difference between the free en
gies of Eqs.~22! and ~23!,

f ferro2 f para5
ln 2

R
@R211H2~p!#, ~24!

vanishes at the boundary between the two phases,

Rc512H2~p!511p log2~p!1~12p!log2~12p!,
~25!

which coincides with Shannon’s channel capacity.
Equation~25! indicates that all constructions with eithe

K>3 or L>3 ~andK.1) can potentially realize error-fre
data transmission forR,Rc in the limit where both messag
and codeword lengthsN andM become infinite, thus satura
ing Shannon’s bound.

B. The case ofKÄLÄ2

All codes with eitherK53 or L53, K.1 potentially
saturate Shannon’s bound and are characterized by a
order phase transition between the ferromagnetic and p
magnetic solutions. On the other hand, numerical invest
tion based on Monte Carlo methods indicates significan
different physical characteristics forK5L52 codes as
shown in Fig. 1~b!.

At the highest noise level, the paramagnetic solution~21!
gives the unique extremum of the free energy until the no
level reaches the first critical pointp1, at which the ferro-
magnetic solution~20! of higher free energy appears to b
locally stable. As the noise level decreases, a second cri
point p2 appears, where the paramagnetic solution beco
unstable and a suboptimal ferromagnetic solution and
mirror image emerge. Those solutions have lower free
ergy than the ferromagnetic solution until the noise le
reaches the third critical pointp3. Below p3, the ferromag-
netic solution becomes the global minimum of the free
ergy, while the suboptimal ferromagnetic solutions still r
main locally stable. However, the suboptimal solutio
disappear at the spinodal pointps and the ferromagnetic so
lution ~and its mirror image! becomes the unique stable s
lution of the saddle point equations~17!, as shown by nu-
merical investigation for allp,ps .
-

f
s

r-

rst
ra-
a-
y

e

al
es
ts
n-
l

-
- The analysis implies thatp3, the critical noise level below
which the ferromagnetic solution becomes thermodyna
cally dominant, is lower thanpc5H2

21(12R), which corre-
sponds to Shannon’s bound. That is,K5L52 does not satu-
rate Shannon’s bound, in contrast toK>3 codes, even if
optimally decoded. Nevertheless, it turns out that the f

FIG. 1. Left hand figures show schematic representations of
free energy landscape while figures on the right show the ferrom
netic, suboptimal ferromagnetic, and paramagnetic solutions
functions of the noise ratep; thick and thin lines denote stabl
solutions of lower and higher free energies, respectively, das
lines correspond to unstable solutions.~a! K>3 or L>3, K.1; the
solid line on the horizontal axis represents the phase where
ferromagnetic solution (F, m51) is thermodynamically dominant
while the paramagnetic solution (P, m50) becomes dominant fo
the other phase~dashed line!. The critical noisepc denotes Shan-
non’s channel capacity.~b! K52 andL52; the ferromagnetic so-
lution and its mirror image are the only minima of the free ener
over a relatively small noise level~the solid line on the horizonta
axis!. The critical point, due to dynamical considerations, is t
spinodal pointps where suboptimal ferromagnetic solutions (F8,
m,1) emerge. The thermodynamic transition pointp3 at which the
ferromagnetic solution loses its dominance is below the maxim
noise level given by the channel capacity, which implies that th
codes do not saturate Shannon’s bound even if optimally deco
~c! K51; the solid line on the horizontal axis represents the ra
of noise levels where the ferromagnetic state~F! is the only mini-
mum of the free energy. The suboptimal ferromagnetic state (F8)
appears in the region represented by the dashed line. The spin
point ps , where theF8 solution first appears, provides the highe
noise value at which convergence to the ferromagnetic solutio
guaranteed. For higher noise levels, the system becomes bis
and an additional unstable solution for the saddle point equat
necessarily appears. A thermodynamic transition occurs at the n
level p1 where the stateF8 becomes dominant.
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energy landscape, for noise levels 0,p,ps , offers signifi-
cant advantages in the decoding dynamic comparing to
of other codes (K>3 or L>3, K.1!.

C. General L codes withKÄ1

The particular choice ofK51, independent of the valu
chosen forL, exhibits a different behavior presented sch
matically in Fig. 1~c!; in this case also there are no simp
analytical solutions and all solutions in this scenario, exc
for the ferromagnetic solution, have been obtained num
cally. The first important difference to be noted is that t
paramagnetic state~21! is no longer a solution of the sadd
point equations~17! and is replaced by a suboptimal ferr
magnetic state. Convergence to the perfect solution om
51 can be guaranteed only for corruption rates smaller t
that of the spinodal point, marking the maximal noise le
for which only the ferromagnetic solution exists,p,ps .

TheK51 codes do not saturate Shannon’s bound in g
eral; however, we have found that at ratesR,1/3 they out-
perform theK5L52 code while offering slightly improved
dynamical~decoding! properties. Studying the free energy
this case shows that as the corruption rate increases, su
timal ferromagnetic solutions~stable and unstable! emerge at
the spinodal pointps . When the noise increases further th
suboptimal state becomes the global minimum atp1, domi-
nating the system’s thermodynamics. The transition atp1
must occur at noise levels lower than or equal to the va
predicted by Shannon’s bound. In Fig. 2 we show free
ergy values computed for a given code rate and several
ues ofL, marking Shannon’s bound by a dashed line; it
clear that the thermodynamic transition observed num
cally ~i.e., the point where the ferromagnetic free ener
equals the suboptimal ferromagnetic free energy! coincides
with the channel capacity within the numerical precisio
This implies that these codes saturate Shannon’s boun
optimally decoded.

V. DECODING: BELIEF PROPAGATION ÕTAP APPROACH

The Bayesian message estimate~11! potentially provides
the optimal retrieval of the original messages. However, i

FIG. 2. Free energies obtained by solving the analytical eq
tions using Monte Carlo integrations forK51, R51/6, and several
values of L. Full lines represent the ferromagnetic free ener
~FERRO, higher on the right! and the suboptimal ferromagnetic fre
energy~higher on the left! for values ofL51, . . . ,7. Thedashed
line indicates Shannon’s bound and the arrows represent the
odal point valuesps for L52, . . . ,7. Thethermodynamic transition
coincides with the channel capacity within the numerical precisi
at
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computationally difficult to follow the prescription exactly a
it requires a sum overO(2N) terms. Belief propagation
@12,13# can be used for obtaining an approximate estimate
was recently shown@8# that the BP algorithm can be derived
at least in the current context, from the TAP approach@14# to
diluted systems in statistical mechanics.

Both algorithms~BP and TAP! are iterative methods tha
effectively calculate the marginal posterior probabiliti
P(Si uJ,Cs ,Cn)5(

ˆ$SkÞ i %,t‰
P(S,tuJ,Cs ,Cn) and

P(t j uJ,Cs ,Cn)5(
ˆS,$tkÞ j %‰

P(S,tuJ,Cs ,Cn) based on the
following three assumptions:~1! The posterior distribution is
factorizable with respect to dynamical variablesSi 51, . . . ,N
andt j 51, . . . ,M . ~2! The influence of the checkJm51, . . . ,M on
a specific siteSi ~or t j ) is also factorizable.~3! The contri-
bution of single variablesSi 51, . . . ,N , t j 51, . . . ,M , and
Jm51, . . . ,M to the macroscopic variables is small and can
isolated. Parametrizing pseudomarginal posteriors and m
ginalized conditional probabilities as

P~Si u$JnÞm%,Cs ,Cn!5
11mm i

S Si

2
,

~26!

P~t j u$JnÞm%,Cs ,Cn!5
11mm j

n t j

2
,

P~JmuSi ,$JnÞm%,Cs ,Cn!;
11m̂m i

S Si

2
,

~27!

P~Jmut j ,$JnÞm%,Cs ,Cn!;
11m̂m j

n t j

2
,

the above assumptions provide a set of self-consistent e
tions @8,11#

mm l
S 5tanhS Fs1 (

nPMS( l )/m
tanh21~m̂n l

S ! D ,

~28!

mm l
n 5tanhS Fn1 (

nPMn( l )/m
tanh21~m̂n l

n ! D
and

m̂m l
S 5Jm )

kPLS(m)/ l
mmk

S )
j PLn(m)

mm j
n ,

~29!

m̂m l
n 5Jm )

kPLS(m)
mmk

S )
j PLn(m)/ l

mm j
n .

Here, Ms( l ) and Mn( l ) indicate the set of all indices o
nonzero components in thel th column of the sparse matrice
Cs andCn , respectively. Similarly,Ls(m) andLn(m) denote
the set of all indices of nonzero components in themth row
of the sparse matricesCs andCn , respectively. The notation
Ls(m)/ l represents the set of all indices belonging toLs(m)
except the indexl.

Equations~28! and ~29! are solved iteratively using the
appropriate initial conditions. After obtaining a solution
all mm l and m̂m l , an approximated posterior mean can
calculated as

a-

in-

.
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mi
S5tanhS Fs1 (

mPMS( l )
tanh21~m̂m i

S ! D , ~30!

which provides an approximation to the Bayes-optimal e
mator ~11! in the form of ĵB5sgn(mi

S).
Notice that the rather vague meaning of the field distrib

tions introduced in the previous section becomes clear
d

u
hm

th
h
Th
na

c

-

d

s
on

if

ty
tic
in
to

um
,

i-

-
n

introducing the new variablesx5j imm i
S , x̂5j i m̂m i

S ,
y5z jmm j

n , and ŷ5z j m̂m j
n @11#. If one considers that thes

variables are independently drawn from the distributio
p(x), p̂( x̂), r(y), and r̂( ŷ), the replica symmetric saddl
point equations~17! are recovered from the BP/TAP equ
tions ~28! and ~29!. This connection can be extended to t
free energy as Eqs.~28! and ~29! extremize the TAP free
energy,
f TAP~$m%,$m̂%!5
M

N
ln 21

1

N (
m51

M

(
i PLS(m)

ln~11mm i
S m̂m i

S !1
1

N (
m51

M

(
j PLn(m)

ln~11mm j
n m̂m j

n !

2
1

N (
m51

M

lnS 11Jm )
i PLS(m)

mm i
S )

j PLn(m)
mm j

n D 2
1

N (
i 51

N

lnFeFs )
mPMS( i )

~11m̂m i
S !1e2Fs )

mPMS( i )
~12m̂m i

S !G
2

1

N (
j 51

M

lnFeFn )
mPMn( j )

~11m̂m j
n !1e2Fn )

mPMn( j )
~12m̂m j

n !G . ~31!
mi-
e

ally
ver,
it,
set
nce
ot

r-
this

d by
only

dy-
fer-

s
ree
etic

ates
to,
itial
AP
This expression may be used for selecting the thermo
namically dominant state when Eqs.~28! and~29! have sev-
eral solutions.

We have investigated the performance of the vario
codes using BP/TAP equations as the decoding algorit
Solutions have been obtained by iterating Eqs.~28! and~29!
100–500 times under various initial conditions. Since
system is not frustrated, the dynamics converges wit
10–30 updates in most cases except close to criticality.
numerical results mirror the behavior predicted by the a
lytical solutions.

For eitherK>3 or L>3, K.1 codes, the ferromagneti
solution

mm i
S 5j i , m̂m i

S 5j i , mm j
n 5z j , m̂m j

n 5z j , ~32!

which provides perfect decoding (m51), and the paramag
netic solution (m50)

mm i
S 50, m̂m i

S 50, mm j
n 5tanhFn5122p, m̂m j

n 50,
~33!

are obtained in various runs depending on the initial con
tions ~the message is assumed unbiased, resulting inFs
50). However, it is difficult to set the initial condition
within the basin of attraction of the ferromagnetic soluti
without prior knowledge about the transmitted messagej.

Biased coding is sometimes used for alleviating this d
ficulty @3#. Using a redundant source of information~equiva-
lent to the introduction of a nonzero fieldFs in the statistical
physics description!, one effectively increases the probabili
of the initial conditions being closer to the ferromagne
solution. The main drawback of this method is that the
formation per transmitted bit is significantly reduced due
this redundancy. In order to investigate how the maxim
performance is affected by transmitting biased messages
have evaluated the critical information rate@i.e., code rate
y-

s
.

e
in
e
-

i-

-

-

we

3H2„f s5(11tanhFs)/2…, the source redundancy#, below
which the ferromagnetic solution becomes thermodyna
cally dominant@Fig. 3~a!#. The data were obtained by th
BP/TAP method~diamonds! and numerical solutions from
the replica framework~squares!; the dominant solution in the
BP/TAP results was selected by using the free energy~31!.
Numerical solutions were obtained using 103– 104 bin mod-
els for each distribution and were run for 105 steps per noise
level. The various results are very consistent and practic
saturate Shannon’s bound for the same noise level. Howe
it is important to point out that close to Shannon’s lim
prior knowledge of the original message is required for
ting up appropriate initial conditions that ensure converge
to the ferromagnetic solution; such prior knowledge is n
available in practice.

Although K,L>3 codes seem to offer optimal perfo
mance when highly biased messages are transmitted,
seems to be of little relevance in most cases, characterize
the transmission of compressed unbiased messages or
slightly biased messages. In this sense,K5L52 andK51
codes can be considered more practical as the BP/TAP
namics of these codes exhibit unique convergence to the
romagnetic solution~or mirror image in theK5L52 case!
from any initial condition up to a certain noise level. Thi
property results from the fact that the corresponding f
energies have no local minima other than the ferromagn
solution belowps .

In Figs. 3~b! and 3~c! we show the value ofps for the
cases ofK5L52 and K51, L52 respectively, evaluated
by numerical solutions from the replica framework~dia-
monds! and using the BP/TAP method. The case ofK5L
52 shows consistent successful decoding for the code r
examined and up to noise levels slightly below, but close
Shannon’s bound. It should be emphasized here that in
conditions are chosen almost randomly in the BP/T
method, with a very slight bias ofO(10212) in the initial
magnetization. This result suggests usingK5L52 codes~or
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similar!, rather thanK,L>3 codes, although the latter ma
potentially have better equilibrium properties.

In Fig. 3~c! we show that for code ratesR,1/3, codes
parametrized byK51 andL52 outperformK5L52 codes
with one additional advantage: Due to the absence of mi
symmetries these codes converge to the ferromagnetic
much faster, and there is no risk of convergence to the mi
solution. The difference in performance becomes even la
as the code rate decreases. Higher code rates will resu
performance deterioration due to the low connectivity, ev
tually bringing the system below the percolation threshol

In Fig. 4 we examine the dependence of the noise leve
the spinodal pointps on the value ofL, and show that the
choice ofL52 is optimal within this family. Codes withL
51 have very poor error-correction capabilities as th
Hamiltonian ~8! corresponds to the Mattis model, which
equivalent to a simple ferromagnet in a random field atta
ing magnetizationm51 only in the noiseless case.

VI. REDUCING ENCODING COSTS

The BP/TAP algorithm already offers an efficient deco
ing method, which requiresO(N) operations; however, the
current encoding scheme includes three costly processe~a!
The computational cost of constructing the generating ma
Cn

21Cs requiresO(N3) operations for inverting the matrix
Cn and O(N2) operations for the matrix multiplication.~b!

FIG. 3. Critical code rate as a function of the flip ratep, ob-
tained from numerical solutions and the TAP approach (N5104),
and averaged over 10 different initial conditions with error b
much smaller than the symbol size.~a! Numerical solutions forK
5L53, C56, and varying input biasf s ~h! and TAP solutions for
both unbiased (1) and biased (L) messages; initial condition
were chosen close to the analytical ones. The critical rate is m
plied by the source information content to obtain the maximal
formation transmission rate, which clearly does not go beyonR
53/6 in the case of biased messages; for unbiased pat
H2( f s)51. ~b! For the unbiased case ofK5L52; initial conditions
for the TAP (1) and the numerical solutions (L) were chosen to
be of almost zero magnetization.~c! For the case ofK51, L52 and
unbiased messages. We show numerical solutions of the analy
equations (L) and those obtained by the TAP approach (1). The
dashed line indicates the performance ofK5L52 codes for com-
parison. Codes withK51, L52 outperformK5L52 for code
ratesR,1/3.
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The memory allocation for generating the matrixCn
21Cs

scales asO(N2) since this matrix is typically dense.~c! The
encoding itselfz05Cn

21Csj ~mod 2) requiresO(N2) opera-
tions. These computational costs become significant w
long messagesN5104– 105 are transmitted, which is typi-
cally the case for which Gallager-type codes are being us
This may require long encoding times and may delay
transmission.

These problems may be solved by utilizing systematica
constructed matrices instead of random ones, with so
similarity to the constructions of@4#. Here, we present a
simple method to reduce the computational and mem
costs toO(N) for K5L52 and K51, L52 codes. Our
proposal is mainly based on using a specific matrix forCn ,

C̄n5S 1 0 0 0 ••• 0 0

1 1 0 0 ••• 0 0

0 1 1 0 ••• 0 0

0 0 1 1 ••• 0 0

A A A � � A A

0 0 0 0 ••• 1 1

D , ~34!

instead of a randomly constructed one. ForCs , we use a
random matrix ofK52 ~or K51) nonzero elements per row
as before.

The inverse~mod 2! of C̄n
21 becomes the lower triangula

matrix

C̄n
215S 1 0 0 0 ••• 0 0

1 1 0 0 ••• 0 0

1 1 1 0 ••• 0 0

1 1 1 1 ••• 0 0

A A A � � A A

1 1 1 1 ••• 1 1

D . ~35!

This suggests that encoding the messagej into a codeword
z0 would require onlyO(N) operations by carrying it out in
two steps,

tm5~Csj!m ~mod 2! for m51,2, . . . ,M , ~36!

s

ti-
-
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cal

FIG. 4. The spinodal point noise levelps for K51, R51/6, and
several choices ofL. Numerical solutions are denoted by circles a
TAP decoding solutions (N5104) by black triangles.
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TABLE I. Comparison between the maximal tolerable noise level for codes based on random
systematically structured matrices in the case ofK5L52; decoding is carried out using BP/TAP and th
transmission channel used is the BSC. The performance of the two matrix structures is extremely si

RateR5K/C 0.6666 0.5 0.4 0.3333 0.2857 0.2 0.1

Systematic matrix 0.0527 0.0934 0.1222 0.1416 0.1598 0.1927 0.2
60.0016 60.0019 60.0012 60.0016 60.0007 60.0016 60.0010

Random matrix 0.0528 0.0930 0.1206 0.1439 0.1599 0.1931 0.2
60.0009 60.0019 60.0010 60.0017 60.0010 60.0014 60.0014
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0 5~C̄n

21t!m5zm21
0 1tm ~mod 2! for m52, . . . ,M ,

~37!

with z1
05t1. Both steps requireO(N) operations due to the

sparse nature ofCs . In addition, the required memory re
sources are also reduced toO(N) since only the sparse ma
trix Cs should be stored.

The possible drawback of using the systematic ma
~34! is a deterioration in the error-correction ability. We ha
examined the performance of this construction numeric
to discover, to our surprise, that it is very similar to that
random matrix based codes, as shown in Table I. Altho
our examination is limited only to BSC and independe
identically distributed messages, it seems to suggest
some deterministically constructed matrices may be imp
mented successfully in practice.

VII. SUMMARY

In this paper, we have investigated the typical perf
mance of the MN codes, a variation of Gallager-type err
correcting codes, by mapping them onto Ising spin mod
and making use of the established methods of statis
physics. We have discovered that for a certain choice
parameters, eitherK>3 or L>3, K.1, these codes poten
tially saturate the channel capacity, although this canno
used efficiently in practice due to the decrease in the basi
attraction, which typically diverts the decoding dynamics
ward the undesired paramagnetic solution. Codes withK
52 and L52 show close to optimal performance whi
keeping a large basin of attraction, resulting in more pra
cal codes. Constructions of the formK51, L52 outperform
the K5L52 codes for code ratesR,1/3, having improved
dynamical properties.
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These results are complementary to those obtained so
by the information theory community and seem to indica
that worst-case analysis can be, in some situations, too
simistic when compared to the typical performance resu
Beyond the theoretical aspects, we proposed an effic
method for reducing the computational costs and the
quired memory allocation by using a specific construction
the matrixCn . These codes are highly attractive and provi
lower computational costs for both encoding and decodi
Various aspects that remain to be studied include a pro
analysis of the finite size effects for rates below and ab
the channel capacity, which are of great practical relevan
and the use of statistical physics methods for optimizing
matrix constructions.
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APPENDIX A: REPLICA FREE ENERGY

The purpose of this Appendix is to derive the averag
free energy per spin@Eq. ~15!#. Applying the gauge transfor
mation

Jm→Jm )
i PLs(m)

j i )
j PLn(m)

z j51,

Si→Sij i , ~A1!

t j→t jz j ,

to Eq.~9!, one may rewrite the partition function in the form
Z~j,z,D!5(
S,t

expS Fs(
i 51

N

j iSi1Fn(
j 51

M

z jt j D )
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

@12D^ i 1 , . . . ,i K ; j 1 , . . . ,j L&1D^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

3 1
2 ~11Si 1

•••Si K
t j 1

•••t j L
!#. ~A2!

Using the replica method, one calculates the quenched average of thenth power of the partition function given by

^Z~j,z,D!n&j,z,D5 (
S1

•••Sn
(

t1
•••tn

K expS Fs(
i 51

N

j i (
a51

n

Si
aD L

j

K expS Fn(
j 51

M

z j (
a51

n

t i
aD L

z

3K )
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

)
a51

n

@11 1
2 D^ i 1 , . . . ,i K ; j 1 , . . . ,j L&~Si 1

a
•••Si K

a t j 1

a
•••t j L

a 21!#L
D

, ~A3!
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where averages with respect toj can be easily performed,

K expS Fs(
i 51

N

j i (
a51

n

Si
aD L

j

5)
i 51

N F S 11tanhFs

2 DeFs(
a51

n

Si
a
1S 12tanhFs

2 De2Fs(
a51

n

Si
aG5)

i 51

N K expS jFs(
a51

n

Si
aD L

j

, ~A4!

and similarly for ^•••&z . The main problem is in averages over the sparse tensor realizationsD, which have complicated
constraints. Following the procedure introduced by Wong and Sherrington@20#, this is rewritten as

K )
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

)
a51

n

@11 1
2 D^ i 1 , . . . ,i K ; j 1 , . . . ,j L&~Si 1

a
•••Si K

a t j 1

a
•••t j L

a 21!#L
D

5N 21(D )
i 51

N

dS (
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

D^ i ,i 2 , . . . ,i K ; j 1 , . . . ,j L&2CD )
j 51

M

dS (
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

D^ i 1 , . . . ,i K ; j , j 2 , . . . ,j L&2L D
3 )

^ i 1 , . . . ,i K ; j 1 , . . . ,j L&
)
a51

n

@11 1
2 D^ i 1 , . . . ,i K ; j 1 , . . . ,j L&~Si 1

a
•••Si K

a t j 1

a
•••t j L

a 21!#, ~A5!

whered(•••) represents Dirac’sd function and

N5(D )
i 51

N

dS (
^ i 2 , . . . ,i K ; j 1 , . . . ,j L&

D^ i ,i 2 , . . . ,i K ; j 1 , . . . ,j L&2CD )
j 51

M

dS (
^ i 1 , . . . ,i K ; j 2 , . . . ,j L&

D^ i 1 , . . . ,i K ; j , j 2 , . . . ,j L&2L D ~A6!

represents the normalization constant.
We first evaluate this normalization constant using the integral representation of thed function and Eq.~A6!, to obtain

N5(D )
i 51

N

dS (
^ i 2 , . . . ,i K ; j 1 , . . . ,j L&

D^ i ,i 2 , . . . ,i K ; j 1 , . . . ,j L&2CD )
j 51

M

dS (
^ i 1 , . . . ,i K ; j 2 , . . . ,j L&

D^ i 1 , . . . ,i K ; j , j 2 , . . . ,j L&2L D
5(D )

i 51

N H E
0

2pdl i

2p
expF il i S (

^ i 2 , . . . ,i K ; j 1 , . . . ,j L&
D^ i ,i 2 , . . . ,i K ; j 1 , . . . ,j L&2CD G J

3)
j 51

M H E
0

2pdl j

2p
expF il j S (

^ i 1 , . . . ,i K ; j 2 , . . . ,j L&
D^ i 1 , . . . ,i K ; j , j 2 , . . . ,j L&2L D G J

5)
i 51

N S E
0

2pdl i

2p
e2 iCl i D )

j 51

M S E
0

2pdn j

2p
e2 iLn j D(D )

i 51

N S )
^ i 2 , . . . ,i K ; j 1 , . . . ,j L&

eil iD^ i ,i 2 , . . . ,i K ; j 1 , . . . ,j L&D
3)

j 51

M S )
^ i 1 , . . . ,i K ; j 2 , . . . ,j L&

ein jD^ i 1 , . . . ,i K ; j , j 2 , . . . ,j L&D
5)

i 51

N S E
0

2pdl i

2p
e2 iCl i D )

j 51

M S E
0

2pdn j

2p
e2 iLn j D(D )

^ i 1 , . . . ,i K ; j 1 , . . . ,j L&
@~eil i 1•••eil i Kein j 1•••ein j L!D^ i 1 , . . . ,i K ; j 1 , . . . ,j L&#

5)
i 51

N H R dZi

2p i
Zi

2(C11)J )
j 51

M H R dYj

2p i
Yj

2(L11)J )
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

~11Zi 1
•••Zi K

Yj 1
•••Yj L

!, ~A7!

where we made use of the transformationsZi5eil i,Yj5ein j , and carried out summations with respect to the realization oD.
Expanding the product on the right hand side, one obtains

)
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

@11~Zi 1
•••Zi K

Yj 1
•••Yj L

!#5expS (
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

ln@11~Zi 1
•••Zi K

Yj 1
•••Yj L

!#

.expS (
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

~Zi 1
•••Zi K

Yj 1
•••Yj L

! D
.expF 1

K! S (i 51

N

Zi D K
1

L! S (j 51

M

Yj D LG ~A8!
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in the thermodynamic limit. Using the identities

15E dq dS (
i 51

N

Zi2qD , 15E dr dS (
j 51

M

Yj2r D , ~A9!

Eq. ~A7! becomes

N5E dq dS (
i 51

N

Zi2qD E dr dS (
j 51

M

Yj2r D)
i 51

N S R dZi

2p i
Zi

2(C11)D )
j 51

M S R dYj

2p i
Yj

2(L11)DexpS qK

K!

r L

L! D
5E dqE dq̂

2p i
expF q̂S (

i 51

N

Zi2qD G E drE dr̂

2p i
expF r̂ S (

j 51

M

Yj2r D G
3)

i 51

N H R dZi

2p i
Zi

2(C11)J )
j 51

M H R dYj

2p i
Yj

2(L11)J expS qK

K!

r L

L! D
5E dqE dq̂

2p i E drE dr̂

2p i
expS qK

K!

r L

L!
2qq̂2r r̂ D)

i 51

N S R dZi

2p i
Zi

2(C11)exp~ q̂Zi ! D )
j 51

M S R dYj

2p i
Yj

2(L11)exp~ r̂ Yj ! D .

~A10!

The contour integrals provide the constants

)
i 51

N S R dZi

2p i
Zi

2(C11)exp~ q̂Zi ! D5S q̂C

C!
D N

, )
j 51

M S R dYj

2p i
Yj

2(L11)exp~ r̂ Yj ! D5S r̂ L

L!
D M

, ~A11!

respectively. Applying the saddle point method to the remaining integrals, one obtains

N5extr$q,q̂,r , r̂ %FexpS qK

K!

r L

L!
2qq̂2r r̂ 1NC ln q̂2N ln~C! !1ML ln r̂ 2M ln~L! ! D G , ~A12!

which yields the following saddle point equations with respect toq, r, q̂, and r̂ :

q5
NC

q̂
, r 5

ML

r̂
,

q̂5
qK21

~K21!!

r L

L!
, r̂ 5

r L21

~L21!!

qK

K!
, ~A13!

providing the normalization constant

N5S q̂C

C!
D NS r̂ L

L!
D M

expS qK

K!

r L

L!
2qq̂2r r̂ D . ~A14!

Equation~A5! can be evaluated similarly. Following a similar calculation to that of Eq.~A7! provides

K )
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

)
a51

n

@11 1
2 D^ i 1 , . . . ,i K ; j 1 , . . . ,j L&~Si 1

a
•••Si K

a t j 1

a
•••t j L

a 21!#L
D

5N 21)
i 51

N S R dZi

2p i
Zi

2(C11)D )
j 51

M S R dYj

2p i
Yj

2(L11)D
3 )

^ i 1 , . . . ,i K ; j 1 , . . . ,j L&
S 11~Zi 1

•••Zi K
Yj 1

•••Yj L
! )
a51

n
1
2 ~11Si 1

a
•••Si K

a t j 1

a
•••t j L

a !D . ~A15!

Using the expansion
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)
a51

n

~11Si 1
a
•••Si K

a t j 1

a
•••t j L

a !511 (
a51

n

Si 1
a
•••Si K

a t j 1

a
•••t j L

a 1 (
^a1 ,a2&

~Si 1

a1Si 1

a2!•••~Si K

a1Si K

a2!~t j 1

a1t j 1

a2!•••~t j L

a1t j L

a2!

1•••1 (
^a1 , . . . ,an&

~Si 1

a1
•••Si 1

an!•••~Si K

a1
•••Si K

an!~t j 1

a1
•••t j 1

an!•••~t j L

a1
•••t j L

an!

5 (
m50

n

(
^a1 , . . . ,am&

~Si 1

a1
•••Si 1

am!•••~Si K

a1
•••Si K

am!~t j 1

a1
•••t j 1

am!•••~t j L

a1
•••t j L

am!, ~A16!

results in

)
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

S 11~Zi 1
•••Zi K

Yj 1
•••Yj L

! )
a51

n
1
2 ~11Si 1

a
•••Si K

a t j 1

a
•••t j L

a !D
.expF (

^ i 1 , . . . ,i K ; j 1 , . . . ,j L&
Zi 1

•••Zi K
Yj 1

•••Yj L )a51

n

~11Si 1
a
•••Si K

a t j 1

a
•••t j L

a !/2G
5expS 1

2n (
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

Zi 1
•••Zi K

Yj 1
•••Yj L (m50

n

(
^a1 , . . . ,am&

~Si 1

a1
•••Si 1

am!•••~Si K

a1
•••Si K

am!

3~t j 1

a1
•••t j 1

am!•••~t j L

a1
•••t j L

am!D
5expF 1

2n S (
m50

n

(
^a1 , . . . ,am&

(
^ i 1 , . . . ,i K&

~Si 1

a1
•••Si 1

amZi 1
!•••~Si K

a1
•••Si K

amZi K
! (
^ j 1 , . . . ,j L&

~t j 1

a1
•••t j 1

amYj 1
!•••~t j L

a1
•••t j K

amYj L
!D G

.expH 1

2n F (
m50

n

(
^a1 , . . . ,am&

1

K! S (i 51

N

Si
a1
•••Si

amZi D K
1

L!
~t j

a1
•••t j

amYj !
LG J . ~A17!

Using the identities

15E dqa1 , . . . ,am
dS (

i 51

N

Si
a1
•••Si

amZi2qa1 , . . . ,amD , 15E dra1 , . . . ,am
dS (

j 51

M

t j
a1
•••t j

amYj2r a1 , . . . ,amD , ~A18!

and going through the same steps as in Eqs.~A9!–~A12!, we arrive at

)
^ i 1 , . . . ,i K ; j 1 , . . . ,j L&

S 11~Zi 1
•••Zi K

Yj 1
•••Yj L

! )
a51

n
1
2 ~11Si 1

a
•••Si K

a t j 1

a
•••t j L

a !D
5 )

m50

n

)
^a1 , . . . ,am&

E dqa1 , . . . ,am
dS (

i 51

N

Si
a1
•••Si

amZi2qa1, . . . ,amD E dra1 , . . . ,am
dS (

j 51

M

t j
a1
•••t j

amYj2r a1, . . . ,amD
3expF 1

2n S (
m50

n

(
^a1 , . . . ,am&

qa1 , . . . ,am

K

K!

r a1 , . . . ,am

L

L! D G
.extr$q,q̂,r, r̂%H expF 1

2n S (
m50

n

(
^a1 , . . . ,am&

qa1 , . . . ,am

K

K!

r a1 , . . . ,am

L

L! D 2 (
m50

n

(
^a1 , . . . ,am&

qa1 , . . . ,am
q̂a1 , . . . ,am

2 (
m50

n

(
^a1 , . . . ,am&

r a1 , . . . ,am
r̂ a1 , . . . ,am

1 (
m50

n

(
^a1 , . . . ,am&

q̂a1 , . . . ,am(i 51

N

Si
a1
•••Si

amZi

1 (
m50

n

(
^a1 , . . . ,am&

r̂ a1 , . . . ,am(j 51

M

t j
a1
•••t j

amYj G J . ~A19!



he replica
licit
over the

PRE 62 1589STATISTICAL PHYSICS OF REGULAR LOW-DENSITY . . .
In order to proceed further, one has to make an assumption about the order parameter symmetry. We adopt here t
symmetric ansatz for the order parametersq, r, q̂, andr̂ . This implies that the order parameters do not depend on the exp
indices but only on their number. It is therefore convenient to represent them as moments of random variables defined
interval @21,1#,

qa1 , . . . ,a l
5qE dx p~x!xl , r a1 , . . . ,a l

5r E dy r~y!yl ,

~A20!

q̂a1 , . . . ,a l
5q̂E dx̂ p̂~ x̂!x̂l , r̂ a1 , . . . ,a l

5 r̂ E dŷ r̂~ ŷ!ŷl .

Then, each term in Eq.~A19! takes the form

(
m50

n

(
^a1 , . . . ,am&

qa1 , . . . ,am

K

K!

r a1 , . . . ,am

L

L!
5

qK

K!

r L

L! (
m50

n S n

mD E )
k51

K

dxkp~xk!xk
mE )

l 51

L

dylr~yl !yl
m

5
qK

K!

r L

L! E )
k51

K

dxkp~xk!E )
l 51

L

dylr~yl !S 11)
k51

K

xk)
l 51

L

yl D n

, ~A21!

(
m50

n

(
^a1 , . . . ,am&

qa1 , . . . ,am
q̂a1 , . . . ,am

5qq̂(
m50

n S n

mD E dx dx̂p~x!p̂~ x̂!xm x̂m5qq̂E dx dx̂p~x!p̂~ x̂!~11xx̂!n, ~A22!

(
m50

n

(
^a1 , . . . ,am&

q̂a1 , . . . ,am(i 51

N

Si
a1
•••Si

amZi5q̂(
i 51

N

ZiE dx̂ p̂~ x̂! (
m50

n

x̂m (
^a1 , . . . ,am&

Si
a1
•••Si

am

5q̂(
i 51

N

ZiE dx̂ p̂~ x̂! )
a51

n

~11Si
ax̂!. ~A23!

Substituting these into Eq.~A19!, one obtains

^Z~j,z,D!n&j,z,D5 (
S1

•••Sn
(

t1
•••tn

)
i 51

N K expS jFs(
a51

n

Si
aD L

j

)
j 51

M K expS zFn (
a51

n

t j
aD L

z

N 21)
i 51

N S R dZi

2p i
Zi

2(C11)D
3)

j 51

M S R dYj

2p i
Yj

2(L11)Dextr$p,p̂,r,r̂%S expH 1

2n F qK

K!

r L

L! E )
l 51

K

dxl p~xl !

3E )
l 51

L

dyl r~yl !S 11)
l 51

K

xl)
l 51

L

yl D nG2qq̂E dx dx̂p~x!p̂~ x̂!~11xx̂!n2r r̂ E dy dŷr~y!r̂~ ŷ!~11yŷ!n

1q̂(
i 51

N

ZiE dx̂ p̂~ x̂! )
a51

n

~11Si
ax̂!1 r̂ (

j 51

M

YjE dŷ r̂~ ŷ! )
a51

n

~11t j
aŷ!J D . ~A24!

The term involving the spin variablesS is easily evaluated using the residue theorem,

(
S1

•••Sn
)
i 51

N K expS jFs(
a51

n

Si
aD L

j

)
i 51

N S R dZi

2p i
Zi

2(C11)D3expS q̂(
i 51

N

ZiE dx̂ p̂~ x̂! )
a51

n

~11Si
ax̂!D

5F q̂C

C! E )
l 51

C

dx̂l p̂~ x̂l !K )
a51

n S ejFs)
l 51

C

~11 x̂l !1e2jFs)
l 51

C

~12 x̂l !D L
j
GN

, ~A25!

and similarly for the term involving the variablest. Substituting these into Eq.~A24!, one obtains thenth moment of the
partition function,
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^Z~j,z,D!n&j,z,D5extr$p,p̂,r,r̂%S expH 2NCS E dx dx̂p~x!p̂~ x̂!ln~11xx̂!n21D2MLS E dy dŷr~y!r̂~ ŷ!ln~11yŷ!n21D
1

1

2n FNC

K E S )
k51

K

dxk p~xk!D S )
l 51

L

dylr~yl !D lnS 11)
k51

K

xk)
l 51

L

yl D n

21G J
3F E S )

k51

C

dx̂kp̂~ x̂k!D K S eFsj)
k51

C

~11 x̂k!1e2Fsj)
k51

C

~12 x̂k!D nL
j
GN

3F E S )
l 51

L

dŷl r̂~ ŷl !D K S eFnz)
l 51

L

~11 ŷl !1e2Fnz)
l 51

L

~12 ŷl !D nL
z
GM D . ~A26!

Finally, in the limit n→0 one obtains

1

N
^ ln Z~j,z,D!&j,z,D5 lim

n→0

^Z~j,z,D!n&j,z,D21

nN

5extr$p,p̂,r,r̂%F2
C

K
ln 22CE dx dx̂p~x!p̂~ x̂!ln~11xx̂!2

CL

K E dy dŷr~y!r̂~ ŷ!ln~11yŷ!

1
C

KE S )
k51

K

dxkp~xk!D S )
l 51

L

dylr~yl !D lnS 11)
k51

K

xk)
l 51

L

yl D 1E S )
k51

C

dx̂kp̂~ x̂k!D
3K lnS eFsj)

k51

C

~11 x̂k!1e2Fsj)
k51

C

~12 x̂k!D L
j

1
C

KE S )
l 51

L

dŷl r̂~ ŷl !D K lnS eFnz)
l 51

L

~11 ŷl !

1e2Fnz)
l 51

L

~12 ŷl !D L
z
G . ~A27!
e

il-
APPENDIX B: EVALUATION OF THE MAGNETIZATION

Here, we derive explicitly Eqs.~18! and~19!. After using
the gauge transformationSi→j iSi , the magnetization can b
written as

m5
1

N (
i 51

N

^sgn~mi !&j,z,D , ~B1!

introducing the notationmi5^Si&b→` ~gauged average!. For
an arbitrary natural numberp, one can computepth moment
of mi

^mi
p&j,z,D5 lim

n→0
lim

b→`
K (

$S1,t1%, . . . ,$Sn,tn%

Si
1
•Si

2
•••••Si

p

3expS 2b (
a51

n

HaD L
j,z,D

, ~B2!

whereHa denotes the gauged Hamiltonian of theath replica.
Decoupling the dynamical variables and introducing aux
iary functionsp(•), p̂(•), r(•), andr̂(•), of a similar form
to Eq. ~A20!, one obtains

^mi
p&j,z,D5E )

l 51

C

dx̂l p̂~ x̂l !

3K tanhpS Fsj1 (
k51

C

tanh21 x̂kD L
j

, ~B3!

using the saddle point solution ofp̂(•).
Employing the identity

sgn~x!52112 lim
n→`

(
m50

n S 2n

m D S 11x

2 D 2n2mS 12x

2 D m

,

~B4!

which holds for any arbitrary real numberxP@21,1# and
Eqs.~B3! and ~B4!, one obtains
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^sgn~mi !&j,z,D52112E dzf~z! lim
n→`

(
m50

n S 2n

m D
3S 11z

2 D 2n2mS 12z

2 D m

5E dzf~z!sgn~z!, ~B5!
.
o-
,

s.

ll

et
d

where we introduced a new notation for the distribution

f~z!5E )
l 51

C

dx̂l p̂~ x̂l !K dS z2Fsj2 (
k51

C

tanh21x̂kD L
j

,

~B6!

thus reproducing Eqs.~18! and ~19!.
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